AW: Warum werden (wurden) Speichen gelötet?
Ja, so kontrolliere ich meine Laufräder. Hast du darüber mehr Material?
Hier noch was:
http://www.smolik-velotech.de/laufrad/05speich.htm
... Entlastung im Bodenbereich, eine kurze Mehrbelastung an der hinteren "Ecke" der Abflachung, eine leichte Mehrbelastung für den Großteil eines Radumlaufes und wieder eine kurze Mehrbelastung an der vorderen "Ecke" der Abflachung, bevor erneut die Entlastung im Bodenbereich einsetzt. Diese ständige Schwell-Belastungen, zu denen sich dann noch Belastungsspitzen durch Seiten- und Antriebskräfte sowie herbe Schlaglochrumpler hinzu gesellen, setzen den Speichen auf Dauer erheblich zu, ja sie "zerrütten" regelrecht die innere Materialstruktur der Speichen.
Unterstützt wird die Zerrüttung der Speichen noch durch Schwingungen, die beim Durchfahren von Bodenwellen entstehen. Dabei treten dann so hohe Kräfte auf, daß die Speichen teilweise sogar ganz entspannt wird. Steigt dann die Speichenspannung wieder schlagartig an, so schwingen die Speichen wie die Seiten einer Hawaii-Gitarre. Weitgehend vermeiden können wir solche Schwingungen übrigens durch das Unterkreuzen oder Binden der Speichen, worauf wir im Kapitel Einspeichen noch intensiver eingehen.
... bilden sich zunächst in Nähe der Werkstoffoberfläche Microbereiche, in denen es zu minimalen Verschiebungen der metallischen Strukturen kommt, die auch Gleitverfestigung genannt werden. Das nun hat mit der Zeit ein Nachlassen der molekularen Bindungskräfte zur Folge (der Techniker spricht von Kohäsions-Entfestigung), die schließlich zur Bildung von Microrissen führt. Die Risse werden nach und nach größer und eines Tages reißt die Speiche.
Die bruchgefährdete Stelle einer Speiche ist der Speichenbogen, da hier die Kräfte "um die Ecke" geleitet werden und nun nicht mehr homogen über den gesamten Speichenquerschnitt verlaufen. Es kommt vielmehr zu einer Anhäufung der in der Skizze dargestellten Kraftverlauflinien auf der Innenseite des Bogens. Hier nun wird das Material sehr hoch belastet, während die Bogenaußenbereiche kaum noch beansprucht werden. Der Bogenbereich aber wurde, wie oben ausgeführt bereits beim Anstauchen des Speichenkopfes plastisch verformt, so daß die Stauchzone bis in den späteren Bogenbereich hinein reicht. Durch die anschließende Biegung erfolgt eine weitere plastische Verformung: Das Speichenmaterial wird auf der Bogenaußenseite gestreckt und auf der Innenseite gestaucht, was dort übrigens bisweilen eine leicht körnige Oberflächen-Ausbildung zur Folge hat.
Die Anhäufung der plastischen Verformungen des Bogen- und Kopfbereiches der Speichen erfolgen ja im kalten Zustand an einem bereits kalt verfestigten Draht. Folge: Während der Herstellung sind eventuelle Vorschädigungen des Speichenmateriales in Form winzigster Microrisse nicht auszuschließen. Und es kann für die Speiche sogar noch schlimmer kommen: Bei dünnen Speichenflanschen zieht sich der unter hoher Spannung stehenden Speichenbogen wieder ein Stück auf und es passiert das gleiche wie mit einem verbogenen Schraubenzieher: Im verbogenen Zustand durchaus noch belastbar, bricht der Schraubenzieher ab, wenn er wieder gerade gebogen wird.
Da Speichenbogen und Speichengewinde die bruchgefährdeten Stellen der Speichen sind, kann das Speichenmittelteil dünner ausgeführt werden. Das hat einen interessanten Nebeneffekt zur Folge: Dünne Speichen längen sich bei gleicher Belastung mehr als dicke. Es handelt sich hierbei um sogenannte elastische Dehnungen, also um solche, die (wie bei einer Feder) nach Wegnehme der Belastung ohne bleibende Verformung wieder auf die Ausgangslänge zurück federt. Für die Schwell-Belastung der Speichen nun ist die Umkehrung dieses physikalischen Effektes wichtig: Werden die Speichen durch die Abflachung der Felge im Bodenbereich entlastet, geht die durch die Speichenspannung erfolgte Dehnung zurück. Bei dicken und damit unelastischeren Speichen nimmt dadurch die Speichenspannung stärker ab als bei dünnen Speichen. Hierzu wieder ein Zahlenbeispiel zur Veranschaulichung:
Flacht eine Felge bei größeren Fahrbahnstößen im Bodenbereich um 0,41 mm ab, so geht damit bei einer Speiche mit einem Durchmesser von 2 mm unsere wieder einmal angenommene Speichenspannung von 900 N auf Null zurück, die Speiche entspannt sich also völlig. Eine Speiche von 1,8 mm Durchmesser verliert bei 0,41 mm Abflachung hingegen nur 733 N der Vorspannung und eine Speiche mit 1,5 mm entsprechend gar nur 506 N. Die Schwellbelastung wird also für die dünnere Speiche geringer und sie kann länger dem Auf und Ab der Belastungen widerstehen.
Speichenbrüche treten im übrigen häufiger an den Speichen auf, deren Speichenbogen innen an der Nabe anliegt. Die Erklärung: Bei Seitenbelastung des Laufrades biegt sich hier der Speichenbogen leicht auf - die Folgen hatten wir bereits weiter oben beschrieben. Liegt der Bogen hingegen an der Außenseite der Nabe, so biegt er sich entsprechen zu und erhöht damit seinen Druck auf den Nabenflansch.